

VCB2 series 3.3, 5.0 volt CMOS Oscillator

The VCB2 Crystal Oscillator

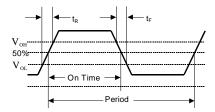
Features

- CMOS output
- Output frequencies to 160 MHz
- Tri-state output for board test and debug
- 0/70 or -40/85 °C operating temperature
- Product is compliant to RoHS directive
 and fully compatible with lead free assembly

Applications

- SONET/SDH/DWDM
- Ethernet, Gigabit Ethernet
- Storage Area Network
- Digital Video
- Broadband Access
- Microprocessors/DSP/FPGA

Description


Vectron's VCB2 Crystal Oscillator (XO) is quartz stabilized square wave generator with a CMOS output, operating off a 3.3 or 5.0 volt supply.

The VCB2 uses fundamental or 3rd overtone crystals, for output frequencies < 80MHz, resulting in low jitter performance, typically 0.5ps rms in the 12 kHz to 20MHz band.

Performance Characteristics

Table 1. Electrical Performance, 5V option					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _O	0.032768		160.000	MHz
Operating Supply Voltage ¹	V_{DD}	4.5	5.0	5.5	V
Absolute Maximum Supply Voltage		-0.7		7.0	V
Supply Current, Output Enabled	I_{DD}				mΑ
0.032768 to 2.0 MHz				10	
2.01 to 30 MHz				15	
30.01 to 50 MHz				40	
50.01 to 160.00 MHz				50	
Output Logic Levels					
Output Logic High ²	V_{OH}	$0.9*V_{DD}$			V
Output Logic Low ²	V_{OL}			0.1*V _{DD}	V
Output Rise/Fall Time ²	t_{R}/t_{F}				ns
0.032768 to 2.00 MHz				10	
2.01 to 20.00 MHz				8	
20.01 to 160.00 MHz				5	
Duty Cycle ³ (ordering option)	SYM		40/60 or 45/5	55	%
Operating Temperature (ordering option)	T_OP		0/70 or -40/8	5	°C
Storage Temperature	T_{STOR}	-55		125	°C
Stability ⁴ (ordering option)	ΔF/T	±20, :	±25, ±32, ±50), ±100	ppm
Output Enable/Disable ⁵	E/D				V
Output Enabled		4.0			
Output Disabled				0.8	
Start-up time	T _{SU}		'l- l /(10	ms

- 1. A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended.
- 2. Figure 1 defines these parameters. Figure 2 illustrates the operating conditions under which these parameters are tested and specified.
- 3. Symmetry is measured defined as On Time/Period.
- 4. Includes calibration tolerance, operating temperature, supply voltage variations, aging and shock and vibration (not under operation).
- 5. Output will be enabled if enable/disable is left open.

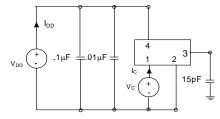
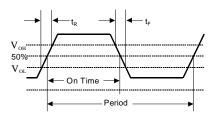



Figure 2. Typical Output Test Conditions (25±5°C)

Table 2. Electrical Performance, 3.3V o	ption				
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _O	0.032768		160.000	MHz
Operating Supply Voltage ¹	V_{DD}	2.97	3.3	3.63	V
Absolute Maximum Operating Voltage		-0.5		5.0	V
Supply Current, Output Enabled	I_{DD}				mΑ
0.032786 to 2.0 MHz				8	
2.01 to 30 MHz				10	ļ
30.01 to 50 MHz				20	
50.01 to 160 MHz				35	
Output Logic Levels					
Output Logic High ²	V_{OH}	$0.9*V_{DD}$			V
Output Logic Low ²	V_{OL}			0.1*V _{DD}	V
Output Rise/Fall Time ²	t_{R}/t_{F}				ns
0.032768 to 2.00 MHz				12	
2.01 to 20.00 MHz				10	
20.01 to 160.00 MHz				6	
Duty Cycle ³ (ordering option)	SYM		40/60 or 45/5	55	%
Operating Temperature (ordering option)	T _{OP}		0/70 or –40/8	5	°C
Storage Temperature	T_{STOR}	-55		125	°C
Stability ⁴ (ordering option)	ΔF/T	±20, :	±25, ±32, ±50), ±100	ppm
Output Enable/Disable ⁵	E/D				V
Output Enabled		2.0			
Output Disabled				0.5	
Start-up time	T_{SU}			10	ms

- A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended.
 Figure 3 defines these parameters. Figure 4 illustrates the operating conditions under which these parameters are tested and specified. For Fo>90MHz, rise and fall time is measured 20 to 80%.
 Symmetry is measured defined as On Time/Period.
- 4. Includes calibration tolerance, operating temperature, supply voltage variations, aging and shock and vibration (not under operation).
- 5. Output will be enabled if enable/disable is left open.

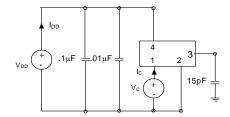


Figure 4. Typical Output Test Conditions (25±5°C)

Enable/Disable Functional Description

Under normal operation the Enable/Disable is left open or set to a logic high state. When the E/D is set to a logic low, the oscillator stops and the output is in a high impedance state. This helps reduce power consumption as well as facilitating board testing and troubleshooting.

Tri-state Functional Description

Under normal operation the tri-state is left open or set to a logic high state. When the tri-state is set to a logic low, the oscillator remains active but the output buffer is in a high impedance state. This helps facilitate board testing and troubleshooting.

Table 3. Outline Diagrams and Pin Out

Pin #	Symbol	Function
1	E/D or NC	Tri-state, Enable/Disable or NC
2	GND	Electrical and Case Ground
3	f _O	Output Frequency
4	V_{DD}	Supply Voltage

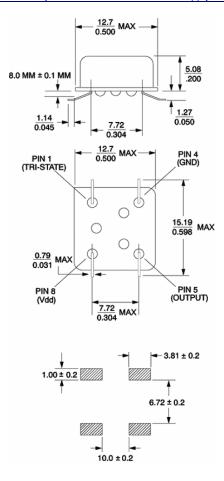


Figure 5, Package drawing

Reliability

The VCB2 qualification tests have included:

Table 4. Environnemental Compliance	
Parameter	Conditions
Mechanical Shock	MIL-STD-883 Method 2022
Mechanical Vibration	MIL-STD-883 Method 2007
Temperature Cycle	MIL-STD-883 Method 1010
Gross and Fine Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2015

Handling Precautions

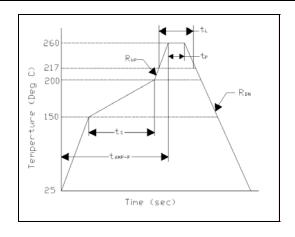
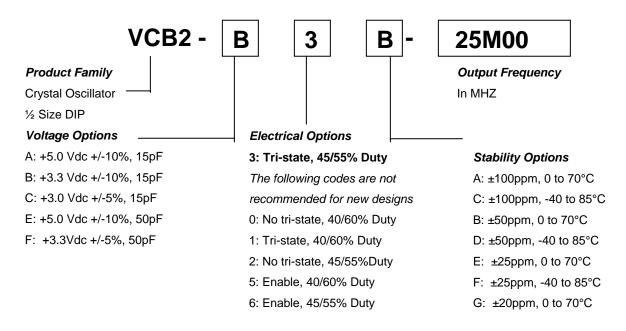

Although ESD protection circuitry has been designed into the the VCB2, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

Table 5. ESD Ratings		
Model	Minimum	Conditions
Human Body Model	1000	MIL-STD-883 Method 3115
Charged Device Model	1500	JESD 22-C101


Suggested IR profile

Devices are built using lead free epoxy and can also be subjected to standard lead free IR reflow conditions, Table 6 shows max temperatures and lower temperatures. A peak temperature of 240°C minimum should be used to reflow the lead solder.

Devemeter	Combal	Volue
Parameter	Symbol	Value
Preheat Time	t _S	150 sec Min, 200 sec Max
Ramp Up	R _{UP}	3 °C/sec Max
Time Above 217 °C	t _L	60 sec Min, 150 sec Max
Time To Peak Temperature	t _{AMB-P}	480 sec Max
Time At 260 °C (max)	t _P	10 sec Max
Time At 240 °C (max)	t _{p2}	60 sec Max
Ramp Down	R _{DN}	6 °C/sec Max

Ordering Information:

Note: Not all combinations are available.

Tri-state with a 45/55% is the most common Electrical code and is recommended for most applications.

Devices will be shipped in Anti Static Tubes

For Additional Information, Please Contact:

www.vectron.com

USA: Vectron International • 267 Lowell Road, Hudson, NH 03051
• Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

EUROPE: Landstrasse, D-74924, Neckarbischofsheim, Germany •
Tel: 49 (0) 7268 8010 • Fax: 49 (0) 7268 801281

ASIA: Vectron Asia Pacific Sales 1F~2F. No.8 Workshop No.308 Fenju Rd., WaiGaoQiao Free Trade Zone, Pudong New Area Shanghai, China 200131

•Tel: 8621 50480777 • Fax: 8621 50481881

Tel: 1-88-VECTRON-1

h.h. 47, 0000

e-mail vectron@vectron.com

July 17, 2006